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A model for information spreading in a population of N mobile agents is extended to d-dimensional regular
lattices. This model, already studied on two-dimensional lattices, also takes into account the degeneration of
information as it passes from one agent to the other. Here, we find that the structure of the underlying lattice
strongly affects the time � at which the whole population has been reached by information. By comparing
numerical simulations with mean-field calculations, we show that dimension d=2 is marginal for this problem
and mean-field calculations become exact for d�2. Nevertheless, the striking nonmonotonic behavior exhib-
ited by the final degree of information with respect to N and the lattice size L appears to be geometry
independent.
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I. INTRODUCTION

The problem of information spreading among a popula-
tion has been intensively studied in the last years and several
aspects have been focused upon �1–4�.

The population is generally represented by means of a
graph such that an interaction �link� between two or more
agents �nodes� means that there is a flow of information
among them. Recently, the dynamics of agents making up
the population has also been taken into account �1,2�. Not
only does the mobility of agents provide a realistic feature,
but it also affects the network of acquaintances.

In an earlier paper �1� we introduced a model where
agents are represented by N random walkers which diffuse
on a square L�L lattice and possibly interact if they are
close together. This model also takes into account the degra-
dation of information when passing from one agent to an-
other: a decay constant z quantifies such alteration. As a con-
sequence, the information spreading is a history-dependent
process which is governed by the rules underlying the diffu-
sion of N random walkers on the given space.

Indeed, diffusion phenomena are dramatically affected by
the topology of the underlying space �5–9�. For example, on
infinite lattices, the asymptotic probability for a random
walker to return to its starting point equals 1 in one and two
dimensions, while for d�3 there is a non-null probability to
never return to the starting point. The former case is said to
be recurrent, while the latter is called transient �5–7�. More-
over, in many processes concerning interacting random
walkers, dimension 2 plays the role of an upper critical di-
mension: it separates a higher-dimensional regime where the
mean-field results are exact from a lower-dimensional re-
gime where fluctuations become important. This is the case,
for example, for two-species diffusion-limited reactions �8�,
or for the trapping of a random walker by diffusing traps �9�.
In such processes, additional logarithmic corrections for the
power laws in dimension d=2 typically appear. Hence, in
general, when dealing with diffusion one should also wonder
how the laws describing the problem are affected by the
geometry.

The model introduced in Ref. �1� for d=2 is now ex-
tended to d-dimensional hypercubic lattices. Numerical

simulations are carried for dimensions from d=1 up to d
=5. Analytical investigations are led which especially focus
on the one-dimensional case and on a mean-field approach
which provides good estimates for high-dimensional �d�3�
lattices. Most of the results presented here do also hold for
general Euclidean �i.e., translationally invariant� lattices,
since the large-scale topology of these systems �and quanti-
ties depending on it, such as the time � defined below in the
low-density limit� depends solely on their dimension, and not
on small-scale details.

The main important quantities we are concerned with are
the population-awareness time �, which represents the aver-
age time necessary for the piece of information to reach the
whole population, and the final degree of information per
agent Iag�z�.

The time � depends on the system parameters N and L.
Our numerical results show that in the low-density regime,
and in every dimension d, this dependence can be factorized
as ��N ,L�= f�N�g�L�, where f and g depend on d. Moreover,
in the low-density regime, we find the asymptotic behaviors
of both f�N� and g�L� to agree with mean-field calculations
for d�3, while for d=2 deviations from the mean-field be-
havior appear and for d=1 the results are radically different.
We therefore argue that dimension d=2 is marginal for the
phenomenon under examination, and the mean-field calcula-
tion of � is exact for d�2.

The most important result contained in Ref. �1� concerns a
nonasymptotic phenomenon: the nonmonotonic dependence
of the final degree of information per agent Iag on N and L,
with the emergence of extremal points. A process of optimi-
zation of the final information is therefore intrinsically non-
trivial. We show here that the existence of extremal points is
not a consequence of the special choice d=2, but it arises in
all dimensions d�1. It therefore appears as a universal and
geometry-independent phenomenon, occurring at the cross-
over between high- and low-density regimes.

The paper is organized as follows. Section II is devoted to
the description of the model. Section III contains analytical
results; it is divided into high-density calculations �Sec.
III A�; low-density calculations for d=1 �Sec. III B�; low-
density calculations for d�1 �Sec. III C�. Section IV shows
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results obtained by means of numerical simulations. We first
consider the population awareness time � �Sec. IV A�, then
the behavior of the final degree of information and the quan-
tities that affects it �Secs. IV B and IV C�. Finally, Sec. V
includes our conclusions and perspectives.

II. THE MODEL

The model analyzed in this work represents an extension
of the one introduced in an earlier paper �1�. In this section
we briefly recall how it works.

We consider a population of N random walkers �agents�
moving on a d-dimensional hypercubic lattice sized L and
endowed with periodic boundary condition. Agents are ini-
tially �t=0� distributed randomly throughout the whole vol-
ume Ld. We define the density of agents as �=N /Ld; the
“low-density” regime is for ��1 and the “high-density” re-
gime for ��1. At each following instant each agent jumps
randomly to one of the 2d nearest-neighbor sites. Notice that
the same site can be occupied by more agents, i.e, there are
no excluded-volume effects.

At t=0 we assume that only one agent �called “Informa-
tion Source”� carries information, while the remaining N−1
agents are unaware. Two agents can then interact if their
distance on the underlying lattice is 	1 and if one of them is
informed and the other unaware. By “interaction” we mean
an information passing from the informed agent, say j, to the
unaware one k with a fixed decay constant z �0	z	1�: if j
carries information Ij, then k becomes informed with infor-
mation Ik=zIi. Hence, the information carried by agent j is
represented by the quantity Ij, 0	 Ij 	1, and, in particular,
when Ij �0 �Ij =0� the agent is “aware” �“unaware”�.

Once an agent has become informed, it will never change
nor lose its information. As a consequence, there exists a
final time tfin at which the total information of the system can
no longer evolve: at this time the information has reached
every agent and the simulation stops. Such time is a stochas-
tic quantity with average value � called the population-
awareness time �PAT� and standard deviation denoted as 
�.
Part of this work is devoted to studying the properties of � as
a function of L and N.

The total number of informed agents at a given time t is
again a stochastic variable; we call n�t� its average over all
the realizations of the system �n�0�=1; n���=N�. As a result
of our model, the information carried by an agent is always a
power zl of the decay constant, l being the number of pas-
sages from the Information Source to the agent. It is conve-
nient to divide informed agents into levels, so that an agent
belongs to level l when the information it receives has un-
dergone l passages from the Information Source and equals
zl. We call n�l , t� the number of agents belonging to the lth
level at time t, averaged over all different realizations �n�t�
=�l=0

t n�l , t��. The average total information at time t is there-
fore the generating function of n�t�,

I�z,t� = �
l=0

t

n�l,t�zl. �1�

In particular, we are interested in the final degree of infor-
mation I�z�, that is the total information achieved once the
whole population has been informed,

I�z� = I�z,�� = �
l=0

N

n�l,��zl. �2�

We also denote its average value per agent as Iag�z�
=I�z� /N. The quantity n�l ,�� as a function of l is called the
final distribution of the population on levels.

III. ANALYTICAL RESULTS

Although the model cannot be exactly solved in the gen-
eral case, it is possible to provide approximate solutions in
some limit cases. There are two time scales involved in the
process: one for the diffusion of the random walkers and one
for the information passing. When they are very different,
approximate analytical approaches become feasible and give
results in good agreement with the numerical simulations.
When the two time scales are comparable, only a numerical
approach is possible �Sec. IV�.

In this section we give analytical results for the PAT and
the final distribution on levels in two limit cases. Section
III A treats the high-density ���1� limit, with particular re-
gard to the case d=1. Section III B considers the asymptotic
low-density ���1� limit for d=1. A general mean-field
theory of this limit for all dimensions is given in Sec. III C.

A. High-density regime

When ��1, we can assume that the set of informed
agents covers a connected volume of the lattice, and that this
volume expands with a constant velocity �depending on the
density � and dimension d�. We clarify this statement by
considering d=1.

Let us consider a chain of finite length L, with N→�
agents on it, and label the sites with the numbers from 1 to L
�Fig. 1�. The number of agents on a given site is �; for N
→� ��→��, the probability that a given site is empty is 0.
Also, for �→�, we assume that with probability 1 at least
one of the � agents of a given site will jump to the left and
one to the right. Let the source be in 0 at t=1: all the agents
in 0, 1, and −1 will get informed. At t=2 some of the newly
informed agents jump on ±2; hence, the agents on ±2 and ±3
become informed. The motion of the information front de-
couples from the random motion of the agents; it expands
with a deterministic law, with constant velocity of 4 sites per
time unit. The time required to cover the whole chain is then

� � L/4. �3�

The border of the informed zone contains all the newly in-
formed agents, so each time step adds a new level and

FIG. 1. High-density approximation for d=1.
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n�l ,��=4� for l�1. This is the origin, for high densities, of
the plateau observed in the one-dimensional distributions
�Fig. 7�.

For d�1 it can be shown �see Ref. �1� for the case d=2�
that the volume of the informed zone is a d-dimensional
polyhedron. The time it takes the border of the informed
volume to reach the border of the lattice is again L /4, but
now L /4 more instants are required to cover the rest of the
lattice. Hence, in this case

� � L/2. �4�

The new agents added at each step cover a
�d−1�-dimensional surface, hence n�l ,��� ld−1 for l	L /4,
and n�l−L /4 ,���n�L /4 ,��− �l−L /4�d−1 for l up to L /2.

B. Low-density regime in d=1

Let us consider a chain of length L and a population of N
agents randomly distributed on it, with N�L �Fig. 2�. The
average distance among two agents is �−1= L

N . Due to the
low-density hypothesis, we can neglect interactions involv-
ing more than two agents. In this approach we divide the
problem of diffusion among N agents into a sum of easier
�three-bodies� problems.

Let us consider the instant t0 when the rightmost agent a1
informs an unaware agent a2 �Fig. 2�. Let us call a3 the next
unaware agent on the right: the average distance from a3 to
a1 and a2 is L /N=�−1 �if � is small enough, we can consider
a1 and a2 to be on the same site�. A calculation regarding an
epidemic model in one dimension �1D� similar to ours �11�
found that for low densities the velocity of the front propa-
gation approaches � /2. Hence, the average time it takes one
of the two aware agents to meet the unaware one is
�L /N� / �� /2�=2�L /N�2. If we now suppose that a3 has been
first reached by a2, it will take again a time 2�L /N�2 for one
of them to reach the next unaware agent a4 on the right, and
so on. There are about N /2 processes of this kind on the
right-hand side and N /2 on the left-hand side, which pro-
vides

� �
L2

N
. �5�

Now, if a1 belongs to level l �a2 to level l+1�, a3 will
belong to levels l+1 or l+2 with probabilities 1 /2; a4 will
belong to levels l+1, l+2 or l+3 with probabilities 1 /4, 1 /2,
and 1/4, respectively, and so on. It is easy to show by induc-
tion, starting from a source on level 0, that at the ith infor-
mation passing the new agent on the left-hand side is on
level l with probability 2−i� i

l
� �0	 l	 i�; the same for the new

agent on the right-hand side. Hence, the average final num-
ber of agents on level l is

n�l,�� � �
i=0

N/2

2−i� i

l
	 . �6�

There is no easy closed form for this sum, but it can be
plotted for any value of N: the curve displays a plateau of
height 2, before decaying to 0.

If we call �I�t� the increment of the total information at
time t, we can write

�I�i + 1� = �I�i�
z + 1

2
, �7�

and therefore

I�z� =
z�z + 1�
2�1 − z�
1 − � z + 1

2
	N/2� . �8�

C. Low-density regime in d�1

In the case of low density ���1� the time an informed
agent walks before meeting an unaware agent becomes very
large. We adopt a mean-field approximation by assuming that
the agents between each event have the time to redistribute
randomly on the lattice. In this approximation, the probabil-
ity that two given agents are in contact at a given time is
pd= ��d
−1, where ��d
 is the average time for two random
walkers to meet on a d-dimensional cubic lattice.

The process is an absorbing Markov chain with N states;
the system is in state k when it has k informed agents. The
chain starts from state 1 and evolves to the absorbing state
�state N�. The transition matrix P can be written: the transi-
tion probability from a state k to a state m as a function of N
and pd is

Pkm = �N − k

m − k
	�1 − �1 − pd�k�m−k��1 − pd�k�N−m

for any N and pd. This is an upper triangular matrix, since the
binomial coefficient � N−k

m−k
� is 0 for m
k. We then make a

low-density approximation: we expand matrix P to first order
in pd to obtain

Pkm = �1 − m�N − m�pd for m = k ,

m�N − m�pd for m = k + 1,

0 elsewhere.
�

This means that the system in the state m has a probability
1−m�N−m�pd to stay in m and a probability m�N−m�pd to
jump to state m+1. We now take matrix Q, the submatrix
obtained from P subtracting the last row and column �those
pertaining to the absorbing state�, and compute the funda-
mental matrix F= �1−Q�−1; a direct calculation shows that F
is an upper triangular matrix given by

FIG. 2. Low-density approximation for d=1.
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Fkm = � 1

m�N − m�pd
for k � m ,

0 for k 
 m .
�

The mean time � required to reach the absorbing state N
starting from state 1 is given by the sum of the first row of F,

� =
1

pd
�
m=1

N−1
1

m�N − m�
, �9�

and for N→�,

� �
2

Npd
�� + ln�N�� = 2��d


� + ln�N�
N

, �10�

where �=0.577. . . is the Euler-Mascheroni constant.
A classical result �5,10� states that for d-dimensional cu-

bic lattices the asymptotic dependence of ��d
 on the lattice
size L is

��d
 � �u1L2, d = 1,

u2L2 ln�L� , d = 2,

udLd, d � 2,
�

where the ud are dimension-dependent constants �for ex-
ample, u2=0.758. . .�. As we will show in the following, the
asymptotic dependence of � on L agrees with mean-field re-
sults for every d, while the breakdown of the mean-field
theory shows up in the dependence on N for d	2.

It is possible to include the distribution on levels in the
Markov chain analysis, but the calculations become very
lengthy and we give only the final result. It is

n�l,�� =
1

�N − 1�!
�s�N,l + 1�� , �11�

and is exact for every N. Here, �¯� denotes the absolute
value, and s�m ,k� is the Stirling number of the first kind
�12�. The s�m ,k� are integers that appear in many combina-
torial problems; one of the possible asymptotic expansions
for Stirling numbers is �13�

1

�m − 1�!
�s�m,k�� = �

ln �m�k−1

�k − 1�!
+ O�ln �m�k−2� ,

so that

n�l,�� �
ln �N�l

l!
, �12�

which is the form we will use to fit the low-density distribu-
tions. From this distribution it also follows that

I � Nz. �13�

IV. NUMERICAL RESULTS

A. Population-awareness time

In this section we focus on numerical results concerning
the population-awareness time �. We recall that � has been

defined as the average time it takes the piece of information
to reach the whole population. Due to the analytical results
discussed in the preceding section, we expect the functional
form displayed by ��N ,L� to be strongly affected by the to-
pology of the lattice underlying the propagation.

Figures 3 and 4 show the dependence of � on L with N
fixed, and on N with L fixed, respectively. In Fig. 3, where
both results for d=1 and d=3 are displayed, two different

FIG. 3. Log-log scale plot of the population-awareness time �
versus the lattice size L. Results obtained for a chain �dashed line�
and for a cube �solid line� are depicted. Different lattice-size values
are shown with different symbols, as explained by the legend. For
large densities ���1, HD� and low densities ���1, LD�, straight
lines represent the best fit according to Eq. �14� and Eqs. �15� and
�16�, respectively. Error on data points is less than 2%. The standard
deviation is not appreciable on this scale.

FIG. 4. �Color online� Dependence of the population-awareness
time � on the number of agents N for the cubic lattice d=3; different
values of the lattice size L are shown with different symbols and
colors. When the density of the system is low, data points lie on the
curve given by Eq. �16� which represents the best fit. Error on data
points is less than 2%.
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regimes, of low and high density, are clearly distinguishable
for dimension d=1; for d=3 the range of the high-density
regime is too small, and only the low-density one can be
seen.

The high-density behavior is independent of N; indeed,
for ��1 we find

� =
L

4
, d = 1,

� =
L

2
, d � 1, �14�

in agreement with Eqs. �3� and �4�.
In the low-density regime ���1� and for d�2, � follows

the behavior calculated in Secs. III B and III C. For d=1 the
results as a function of L and N are fitted by

� � C1N�L�, �15�

with C1=0.96�5�; �=−0.98�5�; �=1.98�2�, in agreement
with Eq. �5�.

For d=3,4 we found the best fit for � to be given by the
function

� � Cd
ln�L� + A

N
L�, �16�

where �=d within a 1% error and A=0.59�3�, in agreement
with the value �=0.577. . . found in Eq. �10�. The values of
the constants are C3=0.77�1�; C4=0.39�1� �different in gen-
eral from the ud of the mean-field approximation�.

The low-density limit in the case d=2 deserves a separate
discussion. It is still possible to express � as a product of two
distinct functions,

� � f2�N�L2 ln�L� for d = 2. �17�

The dependence on L is in agreement with the improved
mean-field calculation �see Sec. III C�. This best fit is better
than that in Ref. �1�, where we hypothesized a noninteger
power law �L2.2�.

The analytical form of f2�N� cannot be unequivocally de-
termined by the simulations. In the fitting range the function
A+ln�N�

N agrees with the numerical results better than the
power-law N−0.66 previously given �1�. However, in this case
the value of the fitting parameter is A=−0.18�2�, hence is
definitely different from the mean-field value �. Since there
are no analytical calculations to support this functional form
with this particular value of the fitting constant for d=2, we
cannot rule out higher-order logarithmic corrections.

To summarize, in the low-density regime, the function
��N ,L� factorizes into two parts, depending, respectively, on
L and N,

� �� C1
L2

N
, d = 1,

f2�N�L2 ln�L� , d = 2,

Cd
� + ln�N�

N
Ld, d � 3,� �18�

the Cd being dimension-depending constants. The most sat-

isfying fitting function we have found for f2�N� is
A+ln�N�

N ,
A�−0.18.

The standard deviation 
� displays a similar dependence
on N and L for low densities: 
��N−1L2 for d=1, and so on.
For high densities 
� becomes vanishingly small, which is
explained by the fact that the propagation of information
becomes a deterministic process.

B. Final distribution on levels: Universality of the extremal
distribution

In Sec. II we introduced the function n�l ,��, which rep-
resents the final distribution of agents on levels and is
strongly connected with the final degree of information I�z�.
The asymmetrical-bell shape displayed by the distributions
for hypercubic lattices with dimension d�2 �Fig. 5� and the
way they evolve while varying the system parameters N and
L are analogous to the two-dimensional case �1�.

In the limit case ��1 �Fig. 6� and in every dimension, the
final distribution on levels follows the law n�l ,��� ld−1, in
agreement with the calculation in Sec. III A.

For � small enough �i.e., for L� L̃ and N
 Ñ, see below�
the population distribution on levels for d�2 is well fitted
by the following function:

FIG. 5. �Color online� Final population distribution on levels
n�l ,�� for low-density systems. Data points agree with the fitting
line drawn according to Eq. �19�. For d=2 the fitting parameters
depend smoothly on both L and N, and the curve is distinct from
those of higher dimension and same N. For d�3, systems of dif-
ferent dimension d and size L display distributions that overlap
within the error. Only the dependence on N is left, as is shown for
d=3, N=512.
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n�l,��
N

= A
�ln N�l

��Bl + C�
, �19�

where ��x� is the Euler gamma function �Fig. 5�. The previ-
ous equation is a generalization of Eq. �12� found in the
mean-field approximation for the low-density regime.

The fitting parameters A ,B ,C at low densities for d=2 are
smoothly dependent on N and L, while those for d�2 are all
close to 1 and independent of the lattice size L, keeping only
the dependence on N. Moreover, the data points for d�3
with the same values of N all collapse on the same curve.
This holds for all the regular lattices with d�3 we have
considered: the distribution curves at low densities are inde-
pendent of d, and agree with the mean-field form �Eq. �12��.

The description given so far concerns d�2 lattices; in
Fig. 7 we show for N=512 and varying L the one-
dimensional case, which exhibits quite different distribu-
tions. Such distributions are still very sharp for very high
values of the density �, but soon develop a plateau by in-
creasing L; the plateau persists up to low densities. The ex-
istence of a plateau was justified both in a high-density and
in a low-density approximation �Sec. III�.

The main result of Ref. �1� concerned the existence of an
extremal curve for the distribution of agents on levels. We
have found that this feature does not depend on the dimen-
sion d of the lattice. We show in Fig. 7 how the extremal
distribution emerges in d=1, as a function of L, for a par-

ticular value L= L̃ �here, L̃�1024�, and keeping N fixed,
notwithstanding the fact that its shape is dramatically differ-
ent with respect to the higher-dimensional ones. While L


 L̃, the distribution displays a plateau whose height �width�
is a monotonically decreasing �increasing� function of the
chain length L; the distribution curve shifts to the right. Con-

versely, for L� L̃ a shift-back phenomenon analogous to that
discussed in Ref. �1�: now, by rising L, the height gets larger

while the width gets smaller. As can be seen from Fig. 3, L̃
corresponds to the crossover between high- and low-density
regimes. The same happens by varying N and keeping L

fixed; there is an extremal distribution for a particular value

Ñ, depending on L, and corresponding to the crossover be-
tween the two regimes.

This shift-back phenomenon, and the existence of an ex-
tremal distribution, occur in all the dimensions we have in-
vestigated �up to d=5�. It therefore constitutes a universal
feature, independent of lattice dimension, and, as we will
see, it provides striking effects on the final degree of infor-
mation.

C. Degree of information

In this section we deal with the final degree of informa-
tion I�z�=I�z ,�� �2� and its dependence on the decay con-
stant z and system parameters N, L. We remind �Eq. �1�� that
I�z� is the generating function of the final populations
n�l ,��, hence its value depends on the final distribution of
the population on levels analyzed in the preceding para-
graphs.

Let us first consider the dependence on the decay constant
z. Again, results highlight strong differences between the
one-dimensional and higher-dimensional cases �d�2�. In the
latter case and for the low-density regime �approximately �

2−8�, we find

I�z� = Nz, �20�

within the error �
4% �.
On the other hand, when d=1, the final degree of infor-

mation shows an exponential growth which can be repre-
sented by the following equation:

FIG. 6. Final population distribution on levels for high densities
and d=1,2 ,3. The dependence on l is a power law, n�l ,��� ld−1. FIG. 7. �Color online� Population distribution on levels at t=�

for one-dimensional systems with N=512 and L ranging from 23 to
214, as shown by the legend �the lines are guides to the eye�. The
behavior of the distribution is nonmonotonic with respect to L: by
increasing L from small values, the curves first shift to the right and
flatten; the rightmost, extremal curve corresponds to L=1024. Then,
by further increasing L, the curves shift back to the left and sharpen.
The inset shows in detail the shift back with the curves pertaining to
L=28,L=210,L=214.
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I�z� = A
z�1 + z�

1 − z
�1 − e−BN�1−z�� , �21�

where A and B smoothly depend on N and L. Equations �20�
and �21� are in very good agreement with the expressions

found in the mean-field approximation �Eqs. �13� and �8�,
respectively�.

Once z is fixed, Iag�z� depends nonmonotonically on N
and L: let us follow it for N fixed and varying L in Fig. 8 in
the two cases d=1 and d=3. For L small, due to the narrow
distribution discussed in the preceding section, the value of

the information is high. When L= L̃, the population distribu-
tion on levels reaches its extremal form and the information
displays a minimum. As L increases, the information starts to
rise again �as can be seen, the effect gets more marked by
increasing the dimension�. Hence, given a population num-

ber N, there is an optimal lattice size L̃ for which the final
information is minimum. The same happens having fixed L

and letting N vary: there is a minimum for N= Ñ, depending
on L. As underlined in Ref. �1�, the existence of a local
minimum of the final information implies that choosing an
optimization strategy for the spreading of information on the
lattice is not trivial. There is no a priori right direction in
parameter space where to move in order to improve I�z�;
rather, the direction depends on the starting point.

V. CONCLUSIONS AND PERSPECTIVES

In this work the model of information spreading previ-
ously introduced has been extended to different geometries;
indeed, we considered the chain and d-dimensional hypercu-
bic lattices. The occurrence of a nonmonotonic behavior for
the final degree of information is not due to a special geom-
etry underlying the process, but its origin lies in the cross-
over between the two different regimes of high and low den-
sity. Therefore, the existence of minima in the final degree of
information is universal and, remarkably, even the possibility
to derive optimization strategies does not depend on the par-
ticular structure the process is embedded in.

On the other hand, the asymptotic laws for � are interest-
ingly related to the geometry underlying the random-walk
diffusion. In particular, d=2 is a marginal dimension sepa-
rating two well-behaved cases, which suggests an investiga-
tion on in-between dimensions �14�.

The robustness of the existence of extremal point for I is
an important point since the possibility of extracting optimal
strategies is not a feature restricted to some special
structures.
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